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FOREWORD 

This is the third in a series of papers that deal with the problem of finding the 
optimal decision rules for n-period chance-constrained programming models. 
The first two papers in this series are entitled "OptimalDecision Rules for the 
E Model of Chance-Constrained Programming" and "Optimal Decision Rules 
for the Triangular E Model of Chance-Constrained Programming." 

This paper shows how the mathematical results developed in the above- 
mentioned papers can be successfully applied to analysis of problems in plan- 
ning under uncertainty. Such a problem has been formulated in the literature 
as the "Savings and Loan Problem" although the theory has relevance in many 
other situations, some directly concerned with military problems. The same 
model could be used as an aid to decision making in any situation where deci- 
sions must be made periodically over an n-period horizon. This includes such 
problems as planning research and development projects. The particular in- 
stance chosen to illustrate the theory was selected because earlier work has 
been done on this problem, and it is desirable to be able to compare the results 
contained here with those previously obtained by other authors. 

The work of Professor Charnes was partly supported by ONR Contract 
Nonr-1228(lO), Project 047-021, and by projects EF00355-01 and WP00019-04 
with the National Institutes of Health (NIH). 
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ABSTRACT 

This paper contains an application of chance-con strained 
programming to a problem in financial planning. In particular 
the problem is one of planning for liquidity in a savings and 
loan association first discussed by Charnes and Thore. The 
optimal rules for this problem are found and compared with the 
optimal linear rules given by Charnes and Thore. The discon- 
tinuous nature of the optimal rules is discussed from economic 
and control theory viewpoints. 



Introduction 

This paper gives an application of the method of chance-constrained pro- 
gramming to a problem in financial planning. Such problems are particularly 
well suited to analysis by chance-constrained programming because they deal 
with questions of planning in the face of an uncertain future and are such that 
the chance elements enter into both the objective function and the constraints. 
These are precisely the kinds of problems that chance-constrained program- 
ming was designed to handle. 

In most of the work done thus far in chance-constrained programming, 
problems have been solved by converting them into equivalent deterministic 
and, in general, nonlinear problems. This transformation has been accomplished 
chiefly by restricting the class of admissible decision rules to the class of 
linear decision rules.1"3 

Even purely deterministic models have proved useful in the analysis of 
problems of financial budgeting.   Specifically, the work of Charnes, Cooper, 
and Miller4 on the problem of the costing of funds in a simple warehouse model 
is mentioned. There in addition to the usual set of constraints in a warehouse 
model, is added a simple deterministic liquidity constraint requiring that the 
planned accumulation of cash be greater than or equal to the difference between 
tho minimum cash balance considered acceptable and the initial cash holdings. 

The specific problem presented here is a two-period problem of planning 
for liquidity in a savings and loan association.  The model used was first dis- 
cussed by Charnes and Thore.5  Their assumption was that the admissible class 
of decision rules was the class of linear rules.  The deterministic equivalent 
was found and the resulting nonlinear programming problem was solved to get 
the optimal decision rules in terms of the parameters of the model. 

The results presented in this paper differ from these in one extremely 
significant way.  It is no longer assumed that the class of decision rules under 
consideration is linear.  In particular, the decision rules will be arbitrary func- 
tions of the random observations and decision rules of previous periods, sub- 
ject only to certain regularity conditions that permit the use of the isoperimetric 
theory of the calculus of variations. Thus the admissible class of decision rules 
in this formulation is much larger than the class of only linear rules. 

In Charnes and Kirby* necessary conditions were developed for decision 
rules, restricted only to the class described above, to be optimal for the type 
of problem to be considered here.  Most of the mathematical results in this 
paper will be based on the results contained in this paper. 

It is shown that under certain circumstances the optimal decision rule in 
this class of feasible rules is, in fact, the optimal linear rule.  The result is 
of particular importance because it shows that good reason exists, other than 
the fact that it is mathematically more manageable, for limiting oneself to find- 
ing the optimal linear decision rule. 



It will also be shown that in all other cases (i.e., where the rule is not 
linear) the optimal rule is discontinuous.   This result may seem to be highly 
surprising at first but by economic arguments it will be shown that it does, in 
fact, appear to be reasonable. 

Description of the Model 

To provide a background for subsequent mathematical treatment of the 
problem a brief description of the model with some remarks about its institu- 
tional setting will be given (Ref 5, pp 5-22). 

The problem is planning for liquidity in a savings and loan association. 
There are several reasons why the association needs to provide voluntarily for 
liquidity.  These include the fact that the assuciation must be ready to pay its 
savers the money that belongs to them on request.   In other words the associ- 
ation must be prepared to handle withdrawals from its total savings capital. 

At the same time a continuous flux exists in the mortgage-loan portfolio 
of an association owing to oeople requesting and receiving new loans, while a 
stream of repayments from outstanding mortgage loans brings funds back to 
the association.   Hence in any period the association must have cash available 
to meet the excess of new loans over the stream of repayments. 

These liquidity needs are usually met by the inflow of new savings and of 
mortgage-loan repayments.  There are, however, other sources such as the 
stock liquidity, which is available by selling the US government securities con- 
tained in the association's stock portfolio.  Cash can also be oltained by bor- 
rowing from both the Federal Home Loan Bank and commercial banks. 

There are also legal restrictions on the amount of liquid assets that the 
association must hold.  At the present time the required minimum ratio of cash 
plus US securities to savings capital is 7 percent.   Thus, if an association wants 
to hold liquid assets, to be available in case of liquidity needs, it must hold 
liquid funds above this 7 percent requirement. 

The problem can then be expressed as follows:  Given the different needs 
for liquidity of a savings and loan association and given the different sources 
of liquidity available, how should the association choose between these alterna- 
tive sources of funds in order to provide for the given needs of liquidity ? 

In the very simple model discussed in this paper the essential feature is 
that the association holds only two types of assets:   cash and loans.   The as- 
sociation's liquid assets, cash, yield no earnings at all, and the illiquid assets, 
loans, yield earnings through the interest paid on them although they are 
perfectly illiquid.  Thus the association is faced with a clear-cut choice between 
liquidity and profitabilicy. 

Furthermore it is assumed that the making of new loans is a decision varia- 
ble that is completely under the control of the association; i.e., there is perfect 
competition in the loan market so that the association can make any number of 
loans that it wishes on current standard terms. 

The stochastic part of the model arises from the random variations of the 
savings capital of the association.  The increase in withdrawable savings capital 
during period t will be treated as a random variable.   This random variable 
can assume both positive and negative values.  If it is positive, then more money 
has been deposited than withdrawn during that period, whereas if the random 
variable is negative the converse is true. 



As we stated earlier the association needs free cash above the legalliquid- 
ity requirement to enable it to make new loans and to provide for savers who want 
to withdraw part of their investment.  Although it is true that the association 
could borrow to obtain the cash it needs, there are certain chance-constrained 
limits on the frequency of such borrowing.   Thus the problem is one of planning 
for liquidity in the face of the uncertain variations in savings capital, subject 
to the restriction that the association does not want to borrow too often. 

To describe the model more rigorously the following notation is introduced: 
Let    M   -  total cash held by the association 

L   =   mortgage loans 
S   =  the legal liquidity minimum 

S,   =  total withdrawable savings capital at time t 
i   -  dividend rate 

AS,   -  S( - SJ.J (1 + i)   =  the increase in total withdrawable savings 
capital during period I above dividends credited to accounts 
(i.e., the net increase in savings in period t) 

li   =  the new mortgage loans obtained by the association in period t 
Mt   =  cash holdings at the end of period t 
a(   =  annuities received during period t 

The assumption is that the frequency by which pr0payments of loans and 
complete loan payoff J occur in the total loan portfolio does not change over 
time. Assuming further that the association expects to charge a constan* rate 
of interest on its loans over time, the total amount of interest the loan lt will 
bring into the association over the life of the loan is Rlt, where R is the interest 
rate on loans. 

Hence the entire interest earned by loans made during periods t - 1,..., 
T is 

r 
1   RP, 

It is assumed that the objective of the association is to maximize the ex- 
pected interest accrued hy lt, t = 1,..., T, i.e., it is desired to maximize 

It is supposed that a known constant X exists such that the association is 
required by law to keep cash balances amounting to at least 100X percent of the 
total savings capital S.   Moreover, borrowing is not allowed when the associa- 
tion holds cash above the legal minimum, i.e., when M, > XS,.  It is also assumed 
that the association cannot and does not want to borrow too often and therefore 
needs to check the frequency of its borrowing.   This leads to the liquidity 
constraint 

('(M.-AS,) J   c/,        (     1 T, (1) 

where at is some preassigned probability. 
The admissible class of decision rules—distribution of the random varia- 

bles AS, will be discussed in a moment—is such tnat it allows I, to be negative. 
This shall be interpret^ i as term borrowing on the same length of time and 
with the same interest charge as given by the average term loan.  It is assumed 



that such long-term borrowing cannot occur too frequently, therefore the 
constraint 

('(C.-O)./^     ii T. (2) 

where i3t is a preassi^ned probability, is imposed on £,. 
In each period (, t = 1,..., T, the budget constraint (balance-sheet ident- 

ity) is 
V p

(       M^^a. + AS, (3) 

This says that the sum of the cash holdings at the end of period t and the 
new loans made during period I must equal the sum of the initial cash held at 
the start of period t, the annuities received during period t, and the net inflow 
of new savings during period t above dividends credited to accounts.  In brief, 
the left side of Eq 3 gives the use of funds in period t and the right side gives 
the total loanable funds that become available during period t. 

Thus the problem is to 
maximize aRi) (4) 

subject to Eqs 1, 2, and 3. 
Using the data given in Charnes and Thore5 the following expressions were 

obtained for the annuities al and a2, in the two-period problem T = 2 
a,    =   13,104 
a2    =   11,762 + 0.173^1 

in millions of dollars. 
Inserting these expressions into the budget constraint Eq 3 the following 

expressions for M, and M2 are derived: 
M,    =-(,,+ AS, + 13,104 +M0 

M2    =   -0.827t, --t,2 + AS, + AS2 + 24,866 + M0. 
By substituting these expressions into the liquidity constraints Eo 1 the problem 
can be mathematically expressed as 
maximize 

EfHC, < RP2) 

subject to 
(>(- f, i   \S, .  13,101 . M0- AS,)  _  a, 

P(-  0,827 I', -  P2 •   \S,  .   \S2 t2l,8f.6 ^JAS,,)  _   c«2 

I'M', - 0)   J  ß ,, '5' 

V((2~0) .: ß2. 

It is known from the definition of AS, that S, = AS, + S(_ ,(1 + 0.   There- 
fore, S, = AS, + (l + i)Sü and S,, = AS,, + (l + i)S, = AS2 + (1+ i)AS, + (l + i)2S0, 
thus these expressions can be substituted into Eq 5.   Moreover, since R > 0 
and appears in the objective function as the coefficient of both t, and i,2, it can 
be dropped from the problem.   Hence Eq 5 becomes 
maximize 

Ed'l • IV 



subject to 
pi -I', . (I-AIVS,  _ A(l . i)S0 - M0- 1.1,10H j   a, 

i'l-o.HjTt', - r2 . Il-A (1 . illNS, ■ (I-AIXS, _ Ad u)2,s0- M0- n,m,\ j  a2, 

Pd', -:0) - ßv 

(6) 

Pd2j()) - ß2. 

Finally defining 
K,       All . i) S,,- M()- 1.1.104, 

K2      A(l ♦ il^o-M(/-24,866, 
(7) 

and so Eq 6 can be written as 
maximize 

n (U • (2) 

subject to 
PlM', - (I-AJNS, . Kj))  _ u.v 

■ 0.82,        t2 . ll-A(l * iHVS, . (i-Am2-: K2I  .; x2l 

I'd', -0) i ßv 

Pd'2_o) c ß2. 

(8) 

In the development of the model thus far nothing has been said about what 
distributions will be assumed for the random variables AS, and AS2.   In Charnes 
and Thore5 it was assumed ihat LS,, t = 1, 2, were independent random variables 
each being normally distributed with mean E, and standard deviation 6,. 

Because the following mathematical results are applicable for a fairly 
large class of random variables consideration at this time will not be limited 
to only normal random variables.  Instead it is assumed that AS,, AS2 are in- 
dependent, continuous random variables with frequency functions fj(AS,), t - 1, 
2, and distribution functions F^AS,), t = 1, 2, respectively.  It is assumed also 
that either 

dfo in1 (HI 

and either 

or 

<i(\S2) 

r;1 (o) 

o, „r F:,
1
 (1) 

or 

implies 

T2 \j~i    ('»]     TU [fV ('»] for all [) 1 i (0,1) 

1; ■  A (I . i)| Z - 0.H27P. - K„ . (1 - A) F,   (0)       0 

r   r,1 (o) f,.r ,iii P, . o. 



It is emphasized that conditions (a) and (b) do not restrict the distribution 
of ASp   Hence AS, can be any continuous random variable.  Since the 0 and 1 
fractile points of a normal random variable are - ~ and + « respectively, it 
can be seen that AS, and AS2, being normally distributed, are admissible 
random variables. 

Mathematical Treatment 

The problem now is solving Eq 8 for the optimal decision rules -t [ and tj. 
As is customary in « period problems in chance-constrained programming it 
is desired that the jth period decision rule be an explicit function of the random 
variables whose values will have been observed at the time the jth period deci- 
sion rule is put into effect, but it is not a function of the random variables of 
the jth or future period.2»8»7 Thus it is required that t2 be such that l2 = ^(AS,), 
i.e., t2 is a function of A^, but not AS2.   This agrees with the above re- 
quirement. Since the second-period decision l2 must be made before the random 
variable AS2 of the second period is observed, the knowledge of the observed 
value of AS, can be used in making the decision l2.  Similarly it is required 
that i, be a zero-order rule (Ref 2), since ll is not to be an explicit function 
of either AS, or AS2. 

The probability and the expectation will be computed in Eq 8 using the 
joint distribution of AS,, AS2.   Hence 

PI-0,827f, - P2 (VS,) . ll - A(l  t i)l VS, ^ (1 - A) VS2 J K2I 

/A/7i (■\Si}J2(\S2)d(\'il}d(\S2}. 

where A is the set of points for which 

-0.R27P,  - F2 t ll - A(l • i)l NS, . (1 - A) \S2 > Ko. 

This integration over A can be written in the lorm 

where 
K,, ♦ 0.8271', .  (2 (\S,)     ll -A (1 f (HAS, 

fl    """ ^TTT) • 

Thus the integration over A is equal to 

h„   U2 < O.H27 i'    .  ('„(NS,)- |1-A(1 . OIN.S. )^ 
'"i,   F2J^ 1731) [f.fVS^dfVS,), 

where g, h are the smallest and largest values of AS, for which f, (AS,) > 0.* 
Thus 

l,(-0.827P1 - P2 - ll-A(l i i)l\S, ♦ (1-A)\S2 Z K2) _   a2 

if and only if 
^2(0.827l', .   ^(VS.i-li-Ad.OlVS,! 

/fl   F2] p—^ [^(A^jdfAS,)!!-  a2. 

*fl, h may be - ^ and + «, respectively. 



Thus write Eq 8 as 
maximize 

subject to 

•'i' r, h^iUifrodtb^ 

^L-rrJ-1-3'- 
. ^   (0.827?, ♦ K9 *-P,(b,)-ll~A(l+i)lb,| „ 

/'^ ! —rh jr^b.Xifb,)! I- C«21 (9) 

P(?, >0)   > ßj. 

P(f2>0)  > /32. 

where b, = AS, to conform to the notation used in Charnes and Kirby.9 

In order to solve Eq 9 assume that li is fixed and then proceed to 
find the optimal I2. namely, 12, in terms of t, and b,.   Having found 12 put it 
into the objective function of Eq 9 to find EU-O in terms of ll and then solve 
the resulting problem for I,', the optimal value of t,. 

Thus consider the problem 
maximize 

subject to 
.   ^   (0.827P. + P,-ll-Ad+illb, + K,/^ 

CM -^ [Mb.Hfb^i-«,. (io) 

P(f2>0) J ß2. 

where it is assumed that £, is a known constant. 
In order to use the results contained in Charnes and Kirby8 one further 

assumption is required, ^ 
There exists a partition of the set of points for which f, (b,) > 0 such that 

for each interval Ly,', 2^ ] in the partition the following properties hold: 

(a) Q ?>,) d(b,) > 0. 

M0.827F, + P2-ll-A(l HHb, + KJ 
(b) f,, P^ [2 ) i—I \ are conlinuous '" 'Vj ■ :

J' ■ 

and 
(c)    P™  is i'f constant sign in  1) '   z'\ 

This partition shall be referred to as the "optimal partition" of [g, h]. 
From theorem 3 in Charnes and Kirby8, it is known that in any interval 

[y/, 2J'J, ^2 ^1 ^ ^s Penned by one of the following four equations: 

Fjfb,)      0, (11) 

P^fb,)       ll-A(l t i)^,-0.027P, - K2 . (1-A) F21 fH"), (12) 



Pjfb,)       |1-A(1 * iHb,-0.827P. - K2 . (1-A) Fj1 (0), (13) 

Pjfb,)       |1-A{1 »1)10,-0.827?, - Kj ♦ (1-A) r1 <1), (14) 

where D" satisfies 0 < D" < 1 and is a constant. 
From theorem?8 it is known that a further necessary condition that t,'(bi) be 

defined by Eq 14 over any interval [y'   z' ] in the optimal partition is that Fj HI) 
< + » and satisfy 

df2[F-2
l(\)] 

db2 

Ü. 

The admissible class of random variables violates this inequality when 
FjHl) < + «; hence it is concluded that t^b,) is not given by Eq 14 for any 
interval in the optimal partition. 

From theorem 88 a necessary condition that t^b,) be given by Eq 13 
over some interval [y '   z'] in the optimal partition is that FjHO) >- «, 
and either 

fjlF^lO)]  > TjjfF^1 (D*)), 

or 
ll-A (1 fOlb,-0.827f, - K2 t (l-A)?^1 (0>   -  0 

for some point b, in [y/, z']. 
Again, it can be seen that the admissible class of random variables fails 

to satisfy these conditions.  Therefore ^ is not given by Eq 13 anywhere. 
Hence it has been shown, using the results in Charnes and Kirby8 and the 

assumptions concerning the distributions of b, and b2, that a necessary condi- 
tion that t^ b,) be optimal for Eq 10 is that there exists a partition of [g, h], 
which is denoted by [y^, z'], with properties (a), (b), and (c) previously de- 
scribed and such that in each [y/, z/] either 

or _ 
CjO),)   -   ll-A(l tOlb,-0.827P, - K2 . (l-AlTV (D'). 

where D' satisfies 0 < D* < 1 and D" is a constant. 
There are two possible cases, one in which the constraint P{l'2 * 0) * ß2 

is binding and the other where it is not binding.   In the latter case theorem 6 
Charnes and Kirby8 can be used to conclude that t'^b^ is not identically 0 over 
any interval in our optimal partition.  Thus 
Lemma 1:  If P[^2 (b,) ^ 0] ^ |32 is not binding in Eq 10, then for g s b, ^ h, 

f2(bA)  =   ll-A(l .Olb,-0,827?, - K2 + (1-A) F21 (0"). 

An examination of the first constraint of Eq 10 shows that it must be satis- 
fied as an equality at the optimum.  Otherwise, l'2 (b,) could be increased for 
some value of b,, as the integrand of the constraint is a monotonic increasing 
function of l2, thus increasing the value of the objective function and therefore 

10 



contradicting the optimality oi l'2 (b,).   This equality in the 1 - a2 constraint 
will give 

o"     i - x (15) 

when Lemma 1 holds. 
The case in which the constraint P^' > OJ > fl2 is binding is next con- 

sidered. 
Let I  =   [j :{-2' :» 0 with equality on at most a set of measure 0 in {yf, z!)]. 
Let J =   [j :t'2 $ 0 with equality on at most a set of measure 0 in ( >[, z,)]. 
Let K =   [j U'2 = 0in (y/, z£)]. 
Suppose that D" is known.  Then the problem of determining y', zf, for 

j el and j cJ, can be expressed as 
maximize 

1ul r[(l-A)F2
1 (D"j-K2-0.827f1] fZ|Ti(V dfb,) 

. SifIJ[l-A(ln)]  rv
2' birx(b1}dhl 

subject to 
,   ^                            ,         i0.827P, - U- A (1 . nib, * K2/ _ 

D
'VJV h^O^i-^u^. ^j -~K jf.fb.ldfb,) 

,   ^  10.H27P,  - ll-A(l . i)lb, 4 K2i 
l-.2-/fl   F2j 

! — jf.dfb,), 

y.L Z].   )«l and ). J, 

:,_) - V, , )<l and  )< J, 

3 1 )), )(1 and   )(J, 

:   1 ll,  jf I and J( ], 

(16) 

and 
_   10.827P, t K2-ll -A(l . i)lbJ 

()" -    F2 I -j > for all b] in ly   , : 1 when jfl, 

_   |0.827P, . K2- ll-A(l . illbji 
D     1   r2 i j " f for ail b] in ly^ . z.\ when j( J. 

In Eq 16 the objective is obtained by using the expression for ^2 (bj) given 
in Eq 12 since it is only necessary to perform the integration over those inter- 
vals for which li, (b,) is not identically 0, i.e., for jel and je J.   The first con- 
straint of Eq 16 corresponds to the first constraint of Eq 10, except that it is 
written in such a way that it involves only the intervals lyi , zi ] for which jel 
and j ej.   The second constraint says the P( V < 0) = 1 - 02, which is true if 
and only if P(t2 > 0) = ß2; therefore it corresponds to the second constraint 
of Eq 10.  The remaining conditions assure that a collection of nonoverlapping 
intervals will be secured such that l'2z 0 for jel and 1^0 for jej.   The fact 
that l'2 = 0 on at most a set of measure 0 in any of the intervals for jel  and 
j ej is guaranteed by the fact that  F2 [0.827^, + i<2- [1-A(1 +i)]b1]/ 1- A is a 

11 
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strictly monotonic decreasing function of b, over the sets where f, (b,) > 0, as 
[l-X(l+i)]> 0. 

Using this strict   ionotonicity the last two constraints of Eq 16 can be 
replaced by 

^().H27('1 . K2- ll-A(l t OlyJ 

and 

D    - F, 

DSF. 

1 -A 

0.827F, t K2- ll-A (1 t i)lz 

) 
for all ) (I, 

for ul I j < J. 

Equatior. 16 will now be solved using the Lagrange multiplier technique 
to derive necessary conditions for y,, z^  to be optimal for jd , je J.   To do 
this begin by forming the Lagrangian function 

L   -   [(1-A) F;1(I)')-K2-().827('1U)(, (J^1 fid),) dfb,) 

*   |l-A(l(,)ISjfUf^ (),'(>,) dfbjj 

(,   _   i 0.827P. t K2 

»   \ jljfj IF, (z^-F^yfi-il -ß2)\ 

Il-A(l4l)lb 
(^bjjdfb,)- (1- C/2)- Q, 

lid AID   -F, 

ii,}ßln~-r: 

„   l 0.827 P, : K2- ll-A(l t 01 yj | 

I -A i 
[0.827?, i K9-ll-A (1 t i)l;  j       ,N 

1 - A \        1 

where Ä, n, TJ , ^.. 6,, ^p X., 9., are Lagrange multipliers and 

, ^   l0.827f, - ll-A (1 . Olb, i K2/ 
Q       C ^    ~    Mb,) dfb,). 

The following equations and inequalities provide some necessary condi- 
tions that yl, zj maximize L and hence solve Eq 16. 
Let j. I 
Then dL/a z    =  0 implies 

'l       IUA(l (1)lf, f: ) 

(1- AlFo1 (DV K2 -0.827P, 

1 - All . i) 

(no" 
_   ,0.827P, -ll-A (1 . i)k-   . K, 

o r \ ' ' - '2 \ l_^  

1 -A(l + i) (17) 

12 



and äL/dyj   =  0 implies 

r;J +^ ♦ 5j ll-A) Fj1 (D*)- K2-0.H27F1I 
-^ 

'       ll-A(l t i)| (, (y ) 1 -A(l 4 i) 

(n'r-n^[ .   A        '       }) (18) 
i - A(I * i) 

* 

^  (0.827P, ♦ K2 -ll-A(l ti)ly, | 

Il-Alf2(y.) 

Let jej 
Then öL/B z] = 0 implies 

1) • f, + ) , ^j t(l-A)F21(I)")-K2-0.82?P1l 
1       ll-Ad + i)!/, fij) 1 -Ad + i) 

/ ^   (O.H27f, -U-Adt i)\z, 4 K, ,' 
I nn" - nF, •——•— L   ' "21 l-A 

i -A(I +1) 

(0.827P, -ll-A (1 t-Olz   4 K2 

s_^hlA'' '   "' 1 -A 

i-Ad * i) • 

(19) 

1-Ad4i) ll-Alf2^v) 

and BL/öyj = 0 implies 

n   4 f 4 S. ld-A)Fn1 (D'J- K,-0.827P.l 
v   .. LI i      1 _  f z !_ 

'       [1-Ad-t Olf, (y.) 1 -Ad 4 0 

/ ^   (0.827F, -tl-Ad + nly, + K, i 

i-Ad4,) (20) 

— -   0.7j Tj        0,        j.l and j(J, (21) 

|i-       0  .-f)R)   .   0,        J.l and )(J. (22) 

. 2, 

—t-  <   0  .<*     '   0. jrl  and  je], (23) 
BR 2 ' 

ik = 0,_AjSj  ^  o.        jfl, (24) 

^s o .A   ■ o,     j.l, (25) 

) 
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liT     o.o^     o,     ,,], (26) 

<>, - o.     jfJ. (27) 

From the expression Eq 12 for 1% in any interval [y,,  Zj] for which je I, 
or jcj, it is seen that ^ is a straight line of positive slope as [1-X (1+ i)J> 0. 
Therefore if at some point,say bj, l^ (b,) > 0 then t'z (bj) a 0 for all b, :> b,. 
This conclusion follows directly from the geometry of the situation. 

Let m be the smallest value of j for which l'2 * 0 almost everywhere in 
[y ,  z ].   Then ^'^ 0 in all intervals [V,  Zj] for which) a m. 

Similarly 12 s 0 in all intervals [y, , z ] for which j < m. 
Next, it is observed from Eq 21 that ^ ^ 0 -> T, = 0 — yj =2, from the 

equation öL/öTJ,  =0.   But yj = z, implies that Eq 16 could just as well be solved 
by dropping the value of j from the problem.  So the assumption now is that 
rjj  = 0 for all j. 

Moreover from Eq 22 £j+i ;* 0 — RJU = 0 — yJ + i =2, from the equation 
äL/d^j + 1 = 0. But when j ^ m it is known that li t 0-~l2 > 0, so that yj + i = 2J 
means that in the intervals [y,, 2j]and [>,> i, Zj+ i], tg is defined by £2 = [1-X 
(1 + 0 3b,- 0.827 ll - K2 + (l-x)r21(D/'). If this is the case, then the intervals 
[Vj f zj 1. [.Vj 1 1, 2/+ 1] can be written as one continuous interval [yj , Zj+1]. Thus 
the indexes could be renumbered dropping one interval from the problem. It is 
assumed that 4 j ^ 1 = 0, j 2 m. 

Similarly it is assumed that 4,+ j = 0 for j s m- 2.   Therefore the only 
4j that can be nonzero is £m. 

Using an analogous argument the only öj that can be nonzero is 61,, and the 
only <£j that can be nonzero is 0^, where t is such that Zj   s 2^, jc I, jc j, and k 
is such that yj * yk, jcl, jej. 

Now if jcI then ^j+, = 0, and if tj = 0 also, then Eq 17 implies that there 
is only one Zj for j el.  This follows from the fact that the solution of the equation 

((I-A)FV (D")-K? -0.827?,] 
1 - A (1  t 1 

nn' - OF 11 j 0.8271', i K2-ll-A(l ♦ \)\z 

1 1-A 
1 -A (1  1 1) 

is unique, as F2 is a monotonic function of 2j and it is known that Eq 17 must 
hold for all j c I. 

If 0j ^0 then j = I from the work above.   Hence using äL/äP^ = 0 it is 
found that P^, = 0 — 2^ = h from the equation a L/d<^ = 0, so again 2) is uniquely 
determined.   Hence, there exists at most one interval [yj , Zj ]for jel. 

Similarly by using Eq 20 and our definition of öte, it is shown that there 
exists at most one interval [yj , 2j ] for jeJ. 

Using the fact that I2 is a monotonic increasing function of bi in [yj', 2/ ], 
j el and je J, and that I, J contain at most one index j , it can be seen that the 
constraints restricting t2' > 0, je I, and l'i * 0, je J, can, in fact, be replaced 
by tj > 0 when j = m, ^ < 0 when j = m - 1, and (.2 = 0 for j  ^ m - 1, m.  Note 
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also that it is necessary to have 6m = 0, as 6m / 0 — ym = g —j is empty, which 
is impossible since /32 / 0. 

Since Eq 16 is being solved for y', z' for j fI   and jej, it is now only 
necessary to consider the cases in which ] = m and , - m - ?, 

Let j = m and suppose jm < h so that l'^, / 0.   Then <!>„■-■■ 0 from the equa- 
tion dL/^Pm = 0, and the following possible cases exist. 

(a) ^m ^ 0 and Xm = 0.   Then Eq 17 and Eq 18 imply ym = zm; i.e., I  is 
empty. 

(b) f   = 0 and X   / 0.   Then S   = 0 from Eq 24; hence, from bL/ dKm = 0, 
there is 

F. 

or 

0.8271', ■ K^ - 11- A (I . i)l>m / 

2 j ~ ( 

-A)?'.1 (I)") • 0.827f, ' K21 

1 ■  A (I  . i) ' 
(28) 

Putting this into Eq 18 with j = m, using the fact that öm = 0, the result is 

I -  (1- Atf,,1 (I)") • O.H27I', . !• 

.. ~ \,,-8-7,'i' ^2- n A,l")| V-Ad .,)  

^ 10.8271'!  ■ K.,    II    Ad ■,)\^m, 

'    (1- ITfTO 0. 

or 

Hence, the result is 

i-A d ■ ii    '    M   All", f\   ) 

A.j.Jr,1 (DM 
0. 

(1     A)|,(NJ 
(29) 

But T, [Fo1 (D"") i / 0 as 0 -    D" < 1, therefore Eq 29 implies Xm = 0, which 
is a contradiction.   Therefore 6m = 0, ^ „, / 0 and Am ^ 0 is impossible. 

(c)   ^/0andXm = 0. Then Rw=0-ym   =  z^.   But ^'(yj > 0 and M2.-!) 
•  0 from the definition of m, hence t^y^ ) = 0.   This implies that Eq 28 must 
again hold, therefore, by inserting Eq 28 into Eq 18 the following equation must 
be true: 

 jm 0. or £        0 , 
11-A d uHr.uj 

which is a contradiction.   Therefore 

is impossible. 
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(d)   ^    / 0 and Xm / 0.   Again Eq 28 holds; hen. 

VklfV(n 

(l-A)(2(yffl) H- A(l .nlT, (vm) 

Therefore X = 0 and fm = 0 as by Eqs 23 and 25 X * 0, f * 0, and it is known 
that (1-X), [l-X d + i)], [,(>„), ^(yj, and f2r F"1 ( D') ] are all positive. Thus 
a contradiction exists. 
Therefore 

i >:>        0   ■Ms i-mpu . 
.'   " (30) 

Using an analogous development by assuming that 6m _ , =0 similar con- 
tradictions are derived and it is concluded that 

\ h       .    >   {)    ■ \       .        (|. 
I    m - 1 ' m -1 • 

It has already been shown that at most only one interval [y , 2 ] exists 
in I or j.   So using the constraint that Lj f J IJiU, ) - ^(y, )] = 1 - i92, it is 
seen that J cannot be empty; hence y^., - g, z^_x =  F71 (1-8.,). 

Therefore 
r.; (b,)     li  A (i . iilh,   0.82:1', - K2 . (i .A) F,

1
 fi)") 

for (i .  i), :   r,1 (1 ■ ß.y). 

Moreover using Eqs 30 and 32 Eq 9 can be written as the following non- 
linear problem in the three variables D2, ym, and l]: 
maximize 

''1 •In- A) TV (i) )   k2   o.Hrgn   -p, fNji 

'  ll- Ad ■ it] 1"   1^^ (hl}iihi 

subject to 
<1   A) F,1 (I  -  /,)    K,, 

I,       0, 

_   \ O.H-JTC, 1 K ,    ll    A i| ■ i)|\    I 

^i  -s    " 
„ jo.a-jTr, ■ kJ   ii Ad . iMr,1 u - ii.j\ (33) 

1    A 

,' d - ß,), 

0     i) 

By solving Eq 33 and then putting /,,, D", and y^, into Eq 12 and using Eq 
32 the optimal t', (b,) is derived.   Hence Eq 9 has been solved. 
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Conclusions 

It has been shown in the preceding section that when the constraint PU2 s 0) 
^ ß2 is not binding the result is 

l'2  - ll    A U ' 1)1 b,-0.827 l^'-Ko- (1-A) ?, (1 - ;..,) for g - b, -h. 

In other words, l!, (b,) is a linear function of b, and as such it coincides with 
the optimal linear rule found by Charnes and There5 for this same case.   It is 
emphasized again that in finding the optimal linear rule Charnes and Thore5 

required b, and b2 to be normal random variables, although the results hold 
for a much more general class of random variables. 

In order to give a brief interpretation of these linear rules write 

''i     )i 

t'j      )'21 "M ^ f-V ' ) J > 

where Vj, y2, T^i  are constants and Ej is the mean of the random variable b, 
(i.e., AS,). 

Since y2, = 1 - X (1+i) > 0, the optimal decision rule U' states that if 
there has been an inflow of savings during period 1 that exceeds the mean, 
free cash holdings during period 2 will be lowered by an amount y2i (b,  - E]), 
as opposed to the case in which /.2 is chosen to be a zero-order rule (i.e., 
t'2 =v2). 

It is also clear from the solution that the holdings of free cash will be 
equal to their minimum values as long as these minimum values do not inter- 
fere with the limitations of long-term borrowing given by the i'{tl > 0) ^ ßl , 
t = 1, 2, constraints.   When these constraints become binding the amount of 
free cash held will be greater than this minimum value.   Thus the association's 
profits drop, owing to the loss in interest that would be obtained if less money 
were held and, consequently, more money loaned. 

It is worth noting at this point that if Eq 5 were expanded to be a full n 
dimensional problem and if it were assumed that the constraints Pit,  • 0) ß 
j = 1,... , n, are not binding then  by theorem 6 in Charm s and Kirby6 it can 
be seen that the optimal rule for l, will, in fact, be the optimal linear rule. 
This result certainly gives great justification for using linear decision rules 
in cases where the computation of the optimal decision rule from a much larger 
class of decision rules is extremely difficult to do. 

Consider the case where the constraint PC _, -0)  • /32 is binding.   The first 
observation is that in this case l2 is discontinuous.   The fact that it must have 
at least one discontinuity follows directly from Eq 32, since it is known that 
^m > ^T* ^ " ^ when P(-t2  • 0) ■ 82 is binding.   In general, however, t2 will 
also be discontinuous at b,  = Fj'(l-9.,). 

t2 (b,) will be continuous at b, = f]1 (I - ß.-,) if and only if 12 J]1 (1 - ß2)] 
= 0, i.e"., if and only if    1 - X (1 + i). T,' (1-3.) -0.827 l\ - K„ + fl - x) F71 

( D* ) = 0. 
One way of understanding why f ' is discontinuous is by the following in- 

tuitive argument:   suppose that when 5L. = Hl\ the optimal rule is linear, but it 
is discontinuous for all ß.-.     ß\.  Suppose that S_, is increased to ^2 = ß^ + e. 
It is known then that to get ' !   it is necessary to increase the measure of the 
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set of points for which 1%   * 0 where t" is the optimal rule when ß2 - ß'l, i.e., 
l02 must be increased for some values of h, to get t*.   The 1 -a2 constraint 
being satisfied by (" as an equality means that 1% must also decrease for some 
values of b,, otherwise this constraint would be violated.   The question then 
arises, for what values of b, should 1° be increased and for what values should 
l0

2 be decreased in order to get t2'.  It seems reasonable that t'2 should be as 
close to l02 as possible.   Therefore -1° should be increased for those values of 
b, for which l0

2 < 0 but is almost 0.   Similarly l^   should be decreased where 
it is positive but almost 0.  This accounts for the location of the region I}* 0. 
For all remaining values of b,, 1°, is changed as little as possible by making 
l'2 linear with the same slope as 1° and changing the intercept term just enough 
to satisfy the 1 - a2 constraint. 

If it is assumed that b^nd b2 are N(Et , öt), I = 1, 2, random variables, it 
c^n be shown that the optimal linear rule when the jSo constraint is binding is 

(i- A) s., (n.invxtr1 (i -/i,) s,       A 
A M . ,1      <' -^ " " >     (l)r   L,) 

(34) 
( (l-A) .S, (().i::t)1>' ' (I-/J2) S, j 

I)-1 (l-/-i2) Ö, 1 -A (1 . i) 

where * is the distribution function of a N(0, 1) random variable. 
Now suppose that 8.2 > % , then 4>'' (1 - i32) < 0, so that the slope of -t^ in 

Eq 34 is greater than the slope of 12 in Eq 32.   This meanc that the optimal 
linear rule would recommend borrowing more when b, is very negative and 
lending more when b] is very positive than would the optimal rule given by 
Eq 32. 

Conversely if S < l/2, the slope of Eq 34 is less than the slope of Eq 32 
when l', i 0.  In this case using the linear rule recommends borrowing less 
and lending less for small and large values of b, respectively, than would 
Eq 32. 

In conclusion, there is one further reason for not being too surprised at 
the discontinuity of l'2 under certain circumstances.   Equation 10 can be re- 
garded as a problem for finding the "optimal control" l2 (b,).8   From control 
theory it is known that in many cases the optimal control is discontinuous.  It 
takes on one value for certain time intervals and then switches abruptly to 
another value.   This is precisely what l2 does.   It is defined by Eq 32 for all 
values of b, in .((, Fj1  (1    S> P, it then switches to f ' = 0 from  Pf1 (1 - ^2) 
to y^  , and then switches again to the line defined by Eq 32.   Thus l'n behaves 
similarly to the optimal controls in many control-theory problems. 
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